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SUMMARY 

Four new methods are presented a method of accelerating the truncation error convergence, a fourth and fifth 
order difference scheme for discretizing the normal partial derivatives, high order quadrature formulae for 
integrating a stream function and a third order implicit scheme for treating the streamwise partial derivatives. 
These are seen to be effective in finding solutions to the boundary layer equations in which the step sizes are 
adaptively altered to meet an error bound. 

INTRODUCTION 

The Navier-Stokes equations describing the motion of a continuous fluid are simplified to the 
Eulerian equations by letting the viscosity and thermal conductivity be zero. This reduces the order 
of the equations from 2 to 1 and means that the actual body boundary condition of zero velocity 
cannot be imposed and that a slip velocity and temperature discontinuity must be permitted at the 
wall. 

The Euler equations are obtained by letting pa = 0 where pa is a characteristic viscosity of the 
flow. The boundary layer equations are obtained from the Navier-Stokes equations in the double 
limit pa + 0, y + 0 where y is the co-ordinate normal to the wall. This is given in, for example, 
Reference 1, pp. 1-20. 

The algorithm presented is able to predict the position of the separation point to within a user- 
defined accuracy. 

Although axisymmetric boundary layers may be solved almost as easily as two-dimensional 
problems’ this paper confines itself to the two-dimensional case. 

One aim is to devise schemes which can find adaptive solutions to problems in which dU,/dx 
would be high near the stagnation point. U ,  is the edge velocity and x is the distance from the 
stagnation point in a blunt body flow (see Figure 1). This implies that the equations must be solved 
over at least two grids, the solutions compared and the mesh sizes decreased and the problem 
resolved if the error limit is not met or the mesh size increased if the errors are considerably less 
than the required limit. 

Initially the linearized Crank-Nicolson method of Cooke and Mangler3 was used. The only 
innovation being the truncation error extrapolation described in section 9. The 4th and 5th order 
schemes described in sections 5-7 were then derived. A 3rd order scheme was also used for the 
streamwise derivatives as opposed to the ‘smeared‘ schemes of Cooke and Mangler.3 These were 
found to be most effective. 
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Figure 1. A sketch illustrating the co-ordinate system: x is the streamwise distance along the body and y the normal 
distance 

2. THE PRIMITIVE EQUATIONS 

The equations are first presented in their primitive form to clarify the symbols used. 

y + O )  are 
The conservation equations (obtained from the Navier-Stokes equations in the limit pm + 0, 

Mass 

x-momentum 

au ;: a”y( :) au 
ax a y  

p u - + p V - = - - + -  p- 

y-momentum 

This means that the pressure across the boundary layer has its free stream body value for that x co- 
ordinate. 

Energy 

(Y)>’-$ ah ah a p  
ax a y  ax  p U - + p V - = U - + p  - (4) 

where p is the density, U and V the x and y velocity components, p is the pressure, h is the specific 
enthalpy, p is the viscosity and q is the heat-transfer rate. 

An ideal gas is used in the examples given here and its properties are as follows. An explicit state 
equation h = [ y / ( y  - l)] ( p / p )  is assumed. y = cp/c, is the ratio of the constant pressure to constant 
volume specific heats. The viscosity p is assumed to vary according to Sutherland’s law’ which 
states that 

~ 3 1 2  

p = a constant ~ 

T + C *  

where T is the absolute temperature and, C* is a constant which is taken to be 117 K for air. 
The Prandtl number Pr = (pcp)/A is assumed to be constant, and a value of 0.72 has been taken 

for air. As the constant pressure specific heat cp is constant for an ideal gas the thermal conductivity 
A varies inversely to p. 

( 5 )  
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The heat-transfer rate q in equation (4) is given by 

P ah 
4 = - p y a y  

The higher order methods could be used to calculate dissociating laminar boundary layers. 

3. THE PRIMITIVE BOUNDARY CONDITIONS 

The equations (2) and (3) are parabolic. Using the analogy with transient one-dimensional heat 
conduction the x-dimension is time like and the y-axis is space like. No boundary conditions have 
yet been imposed. Reverting to the heat conduction analogy, the temperature profile at time t = 0 is 
given in addition to the boundary conditions at the end points for t 2 0. This is equivalent, in this 
problem, to knowing the stagnation point profile at which x=O. This, however, has to be 
calculated, and one of the reasons why the equations must be transformed is to allow this starting 
profile to be computed. In this section the function f(x) is some, not necessarily continuous, 
function of the dependent variable x which is given by the user. 

The boundary conditions on (l), (2) and (4) are 
(i) at the wall ( y  = 0): 

U = 0: no slip condition (7) 
(P V )  = f(x) (8) 

where f(x) is a function giving the wall surface mass transfer. This is taken as zero in the examples 
given. 

On the energy equation one of (9), (10) or (1 1) may be imposed: 

h = f (4 
where the function f(x) specifies the wall enthalpy, 

where the function f(x) specifies the wall enthalpy normal derivative, or 

where is the Stefan-Boltzmann constant and E(T)  is the emissivity, which is normally a weak 
function of T. The function f(x) specifies the wall heat transfer imbalance between radiative losses 
and conductive gains from the boundary layer. Specifying f(x) = 0 for all x implies that there is, at 
each point on the body, local equilibrium between radiation and the heat conducted in from the 
boundary layer. 

(ii) At the edge of the boundary layer ( y - r  00): 

u-r u, (12) 

H - r H ,  (1 3) 

where U,(x) is the wall slip velocity from the inviscid solution. 

where H, is the total enthalpy (constant along the body streamline). 

u’, H,  = h ,  + - -  
2 
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4. THE TRANSFORMED EQUATIONS 

The equations and their boundary conditions, in their primitive form, are not amenable to being 
approximately solved for two reasons: first the problem of generating the starting stagnation point 
profiles and, secondly, the problem of the growth of the boundary layer thickness; the distance to 
which the boundary layer equations must be solved grows rapidly. Reverting to the heat 
conduction analogy the space domain would expand rapidly and unpredictably as time increased. 

The transform used is originally due to Clutter and Smith4 and has been used by Jaffe and 
Smith2 and Cooke and Mangler.3 It is used slightly differently here: Jaffe and Smith2 use the free 
stream conditions as the reference point; the stagnation conditions are used here and Cooke and 
Mangler3 non-dimensionalize flow variables before transforming them. This is unnecessary; the 
transform itself performs the non-dimensionalization (the x co-ordinate remains dimensional but 
appears, in the transformed equations, as a term xax/ax, where x is dimensionless). Thus dividing x 
by a characteristic length and then taking difference expressions for its first derivative in this system 
will be identical to leaving it in the original dimensioned form. 

The transform neglects higher order transverse curvature terms but these are only relevant to 
axisymmetric flows. Let 

where the equations are to be written with x and q as dependent variables. ps and ps are the density 
and viscosity at the stagnation point. U, is the (dimensioned) velocity at the edge of the boundary 
layer (or, equivalently, the slip velocity on the wall). Define a stream function $ satisfying: 

p u = -  a* and pV=--  a* 
a Y  ax 

The following relations between the partial derivative operators are used to transform the 
equations: 

( : ) y  = ( :)q + ( 2)y (t ), 
and 

The subscript denotes a constant value of the subscripted dependent variable. A second, 
dimensionless, stream function 4 is introduced, which satisfies 

U ($), = u, = u 

where u is a dimensionless velocity. The relationship between $ and 4 is 

* = J z i G 4  (20) 
The pressure in the boundary layer is given by its inviscid value; so 
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The definition of I) incorporates the mass conservation equation, and the x momentum equation 
becomes 

where 

Let 

Using u as defined in (19) gives 

Values of 4* are found by differentiating (24) to give 

If there is no surface mass transfer at the wall then 4 = 0 at v] = 0 and, from (24), it can be seen that 
4* = 0 at the wall. Equation (26) can then be integrated to give values of 4*. The energy 
conservation equation (4) is written with the dimensionless total enthalpy s = H / H ,  as the 
dependent variable and with v] and x as independent variables to give 

5. SOLVING THE EQUATIONS 

A shooting method is used by Jaffe and Smith' to perform the normal co-ordinate integration of 
equations (22) and (27). A value of the dependent variable first derivative at the wall is assumed and 
the equation is approximately solved by a Runge-Kutta or multistep method. The values of these 
derivatives are, in the non-linear case, iteratively altered until the outer boundary condition is met. 

An alternative method is to use a linearized Crank-Nicolson scheme to solve equations (25) and 
(27). This was originally chosen as there appeared to be a way of performing a global Richardson- 
style extrapolation to decrease the truncation errors. Section 9 describes the method and the 
difficulty encountered in finding an interpolating function which fills in the gaps left after the 
extrapolated solution is found at half the normal direction meshpoints. This restriction does not 
apply to using the method to reduce the streamwise truncation errors. 

However, the main innovation in this paper is in the derivation of 4th (and 5th) order non- 
centred difference schemes for this problem. These schemes rely on the fact that the v]  co-ordinate of 
the edge of the boundary layer is determined by the solution of the equations. Extending the 
boundary layer cannot make the solution worse, and the values of the edge conditions may be 
extended without error. 

The value of ylO3 is not known exactly. If it is made too small then the boundary layer will not be 
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properly solved, if it is too big there will be wasted computation. qm is normally between 5 and 7 
(this was also found to be the case in Reference 2). 

Using high order centred Lagrange difference approximations normally poses difficulties at the 
boundaries. The scheme presented here does not. It only has one point nearer to the wall than the 
point at which the difference operator is being applied. It can therefore treat value or derivative 
boundary conditions at the wall as easily as a centred 2nd order scheme. At the outer edge of the 
boundary layer values of the dependent variables are required. Because the boundary layer edge 
conditions can be extended these will be exactly 1. It may be possible to use the non-centred 
scheme, in cases where this edge extendibility does not apply, by using a centred or lower order 
non-centred scheme near the boundary away from the rapid variation in the dependent variable, 
but this has not been investigated. 

Because there is only one element below the diagonal in the matrix obtained when the scheme is 
used in a Crank-Nicolson or implicit method the effort in solving the resulting banded Hessenberg 
matrix is only slightly greater than that to solve a tridiagonal system. The operation counts are 
(where n is the dimension): 

Tridigonal 2nd order scheme: 3(n - 1) additions/subtractions, (2n - 1) divisions and 3(n - 1) 
multiplications. 

Hessenberg 4th and 5th order scheme: 9(n - 1) additions/subtractions, (2n - 1) divisions 
and 9(n - 1) multiplications. 

6. NORMAL CO-ORDINATE DIFFERENCE SCHEME 

The following difference approximations are used to replace the first and second partial derivatives 
with respect to v]  at vi: 

and 

When this approximation is used implicity it gives a banded Hessenberg matrix. At the outer 
edge of the boundary layer values for f i  + z, f i  + and f i  + are required. For both u and s these are 1. 
The scheme cannot be extended further: the absolute value of the diagonal element in the 
approximation to the second derivative becomes less than 1 and the method becomes unstable. 

7. QUADRATURE FORMULAE FOR EQUATION (26) 

Cooke and Mangler3 used the following expression to find an approximate value of 4* at the point 
((m + 8)6x, (n - +)6v]). This is basically an application of the trapezoidal rule to perform the normal 
integration using an averaged central difference approximation for the streamwise derivative 
(au)/(ax). This gives 
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Again the edge extendability allows better quadrature formulae for integrating (26) to be 
constructed. These are found by fitting the Lagrangian polynomial through the points fi, f i + l ,  

f i + z , .  . . , f i+ .  and integrating it and then finding the value of this definite integral between qi and 
q i+  1. This is analogous to the construction of a corrector formula in a multistep method. The 3 
point formula is 

4 point: 

5 point: 

6 point: 

The order may be extended. Although these quadrature formulae contain negative weights they 
give good approximations up to order 6. In section 10 results are given using various orders. 

8. THE OVERALL ALGORITHM 

The method operates by checking first the normal co-ordinate truncation errors and then the 
streamwise errors. Equations (25) and (27) are solved repeatedly, with (26) being integrated before 
these are obtained. This is done because (25) is non-linear and is coupled to (26) and (27). Equation 
(25) is linearized with a Newton scheme. 

All these equations contain a streamwise derivative term. These derivatives are replaced either 
by a high order implicit approximation or a linearized Crank-Nicolson scheme is used. When the 
Crank-Nicolson scheme is used the values of 4* are determined at the points ((m + 8)6x, iSq), 
i =  l , . .  ., n with 8 =$. The schemes in (31)-(34) are used to perform the normal co-ordinate 
integration in both cases. 

9. ACCELERATING THE CONVERGENCE TO REDUCE THE 
TRUNCATION ERRORS 

In this section a reliable way of implementing a truncation error reduction and of estimating the 
order of a difference approximation is presented. Let 

xio) = x i  + 4PaihP, x!’) = x i  + 2PaihP and xiZ) = x i  + aihP (35) 
where p is the order of the difference approximation and xio) is the ith component of the dependent 
variable solved on a uniform mesh of interval size 4h, xi1) that obtained on a 2h mesh and x ! ~ )  that 
on an h mesh. xi is the exact solution (this is not strictly true, as x i  includes higher order truncation 
errors). The aim is to eliminate the leading term of the truncation error and estimate p .  This may be 
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done by an Aitken 6’ process: 

The main problem of applying this convergence acceleration is that the denominator for s: may 
become very small. Jennings5 has proposed the following scheme which circumvents the problem. 
[Whereas Jennings applied this scheme to matrix iterative processes (the power method for 
dominant eigenvalues and Jacobi iteration for linear systems) the above system is governed by a 
diagonal matrix. This is important, as the matrix must be symmetric for first difference modulation 
(see (39)) to always improve the approximation]: 

(37) y = + s(x(2) - 

where x and y are vectors with a single scalar value of s which is given by 

The vector w is chosen as w = x(O) - x(’). This is called first difference modulation by Jennings. An 
alternative method of calculating s: is 

This defines the rate of decay of the truncation errors. In (37) a single value of A is defined as 

A 
1 - 2  

s=- 

This allows p to be calculated as 

P = log, (;) 
In order for the acceleration to always improve the solution the condition 

must be satisfied for all i. It was found that, in some cases, the inequalities in (42) were not satisfied 
near the edge of the boundary layer where the solution was relatively more accurate than near the 
wall. Accordingly the acceleration is only applied for the values of i for which (42) is satisfied for 
1,2,3,. . . i. When applying this convergence acceleration to reduce the truncation errors in the 
normal co-ordinate direction the problem of finding an interpolating function to ‘fill in the holes’ 
was intractable. The calculation is of the stagnation point profile at which the equations become 
ordinary. The improved values are only defined on the mesh for which x(l) has been calculated. 

In Tables I and I1 the errors between the improved solution and the solution on a quartered 
mesh (compared to the finest mesh of the Jennings method) are compared with the errors of the 
point adjacent to them after interpolation. It can be seen that, whereas the error in the improved 
solution is well behaved, that in the interpolated solution is not. In all cases the error is the relative 
error. 

The interpolating functions tried were a natural cubic spline and various orders of skew 
Lagrangian polynomial. 

An alternative interpolating function is to fit the Lagrangian polynomial through the points f i ,  
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Table I. Results, near the wall, of interpolating in 
the stagnation point profile using a natural cubic 

spline 

uerror "intererror Serror Sintererror 

0 
0.000045 
0.000033 
00000 12 
0.00001 5 
0.000039 
0.000049 
0.000042 
0.000028 
0.0000 1 5 
0~0000075 

0.035 
0.057 
0.0035 
0.024 
0001 1 
0.0 1 6 
0.00 1 2 
0.0 1 3 
0.00 1 5 
0.0 1 2 
00014 

0 
0.0000 14 
0.0000 1 6 
0~000022 
0.000040. 
0.000065 
0~000080 
0.000074 
0.000053 
0.00003 1 
0.0000 1 6 

0.012 
0.044 
0.0038 
0.024 
0.00042 
0017 
0.00036 
0.0 1 3 
0~000022 
0.01 1 
0.000049 

Table 11. Results, near the wall, of interpolating in 
the stagnation point profile using a skew Lagran- 

gian polynomial with p = 8 

Uerror Uintererror Serror Sinter,error 

0 
0.000045 
0.000033 
0~0000 1 2 
0.0000 1 5 
0.000039 
0.000049 
0.000042 
0.000028 
0~0000 1 5 
0.0000075 

0.000 17 
0.000032 
0.000090 
0.000049 
0.000036 
0.000077 
0.000062 
0.000032 
0000014 
0~0000069 
00000044 

0 
0000014 
0.000016 
0~000022 
0.000040 
0.000065 
0~000080 
0.000074 
0.000053 
0.00003 1 
0~0000 1 6 

0.000 1 1 
0.000 1 5 
0.000038 
0.000053 
0~0000088 
0000085 
0.000 1 1 
0000080 
0.000040 
0.0000 1 6 
0~0000082 

f i + l , f i + 2 , .  . . , f i + p  and then evaluate this polynomial at fi+ this is the needed function value. 
Again the values of u and s beyond the edge of the boundary layer are 1. The value of p defines the 
order of the polynomial. This function gives much better interpolates than the natural cubic spline. 

The maximum relative error between the h/4 mesh solution (without any acceleration) and the 
accelerated solution (which is only defined on the 2h mesh) is 0.000080. The maximum relative 
errors in the interpolated points (needed to give a solution on the other half of the points on the h 
mesh) are given in Table 111. 

From Table I11 it can be seen that all the errors in the interpolated points are considerably 
greater than those in the points directly computed from the acceleration. The skew Lagrangian 
polynomials are two orders of magnitude better than the spline, but increasing their order does not 
improve the interpolation. 

For this reason the acceleration cannot be applied in the normal direction and the solution is 
computed and then recomputed with a halved normal step length; the maximum relative difference 
between these solutions then gives a bound on the errors. 
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Table 111. Maximum relative errors in the interpolated 
points to 'fill in the holes' after Jennings acceleration 

Maximum relative error 
in u and s Interpolation function 

Natural cubic spline 0.057 
Skew Lagrange p = 5 
Skew Lagrange p = 8 
Skew Lagrange p = 10 
Skew Lagrange p = 15 

0.00055 
0.000 1 7 
0~00020 
000076 

Finally it should be noted that the Jennings acceleration estimated the order of the normal 
approximation as 4.21, which is as expected, as the second derivatives have been replaced by a 4th 
order difference approximation and the first by a 5th order approximation. 

The Crank-Nicolson method effectively approximates to streamwise derivatives by a central 
difference approximation and so is second order. The acceleration method can be applied in a 
streamwise direction, as there is no need for an interpolating function. However it seemed that 
investigating a third order fully implicit approximation may be useful. This is illustrated on 
Figure 2. The scheme is not self starting, and a Crank-Nicolson method must be used to calculate 
the first three sections. 

The approximation 

- (43) 

replaces the streamwise first derivatives at x i .  This is also used (in the right hand side of (26)) to 
calculate values of 4*. Whereas it is simple to apply the acceleration method when using the 
Crank-Nicolson scheme (the problem is solved with halved and then quartered step lengths) more 
care must be taken with the implicit scheme, so that the order is consistent. 

The circled points (in Figure 3) show what sections are used in computing the streamwise 
derivatives. The sections with squares around them are computed with third order approxim- 
ations. Because of this the 5 section scheme in steps 3,4 and 5 is also third order. 

In the scheme separation shows as a divergence in the non-linear iteration (this was noted by 
Cooke and Mangler3). A least squares straight line is fitted through the iteration differences (these 
are also taken as the maximum relative differences) and when the gradient becomes positive (after, 
say, 10 iterations have been performed) then the separation point is deemed to be in the interval 
between the previous streamwise section and the one being computed. The streamwise step length 
is then halved and an attempt made to recalculate the section. By limiting the number of times that 
this streamwise step bisection occurs the accuracy with which the separation point is calculated 
may be controlled. 

+ ... af 1 ifi - 1 s f i  - + 9fi - - 2fi - p y s X ) 3  - - - ax 66x 4 

10. RESULTS 

All the runs were done for an asymptotic wedge as described in Appendix 2 of Reference 6, using 
the piston theory described in Appendix 1 of Reference 6 to give edge conditions. The edge 
velocities are shown in Figure 7. This was for a 3" semi-angle wedge at 10" incidence with a nose 
radius of 0-05 m. The solution is for the first 1 m of the underside of the wedge, which becomes flat 
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Figure 2. The implicit streamwise difference scheme 
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Figure 3. The implicit streamwise schemes for Jennings' acceleration 
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Figure 4. Crank-Nicolson with 3,4,5,6 and 7 point $* formulae. The heat transfer (in J/mZ) are plotted against streamwise 
distance 
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0.5 m. from the nose. The maximum relative error tolerance is 0.005. The altitude was taken as 65 
kilometres and, from Fiona MacDonald’s r e p ~ r t , ~  the free stream density was 
0.000148375 kg/(m3), the free stream temperature was 229.4K and the free stream velocity was 
5463 m/s, giving a Mach number of 18. An ideal gas was assumed with the gas constant R = 287. 
The specific heat ratio was 1.4 and the Prandtl number 0-72; the viscosity varies by Sutherland’s law 
with Sutherland‘s constant being 117 K. 

Equation (34) defines a 6 point quadrature formula for calculating values of the stream function 
4*. It seemed appropriate to see whether lower order formulae could be more efficient as they 
would involve fewer multiplications. Figure 4 shows the effect on the heat transfers when n used in 
the quadrature formula was taken as 3,4,5,6 and 7. At the point at  which the wedge becomes flat 
the 3 point formula displays an oscillation. These calculations were all done using a linearized 
Crank-Nicolson method. 

Figure 5 shows the same range of quadrature orders when the 3rd order implicit method was 
used. The oscillation disappears. 

Figure 6 shows a set of heat transfers from the Crank-Nicolson method plotted (as dots) on the 
heat transfers from the 3rd order implicit method plotted as a set of straight lines. A 9th order $I* 
quadrature formula was used. 

Figure 8 and 9 show the displacement and momentum thicknesses and the skin frictions, 
respectively. The lower line (for the first section) in Figure 8 is the displacement thickness. A 
negative displacement thickness is possible in highly compressible flows. 

Figures 10 and 11 show an interesting feature of the normal co-ordinate stretching. The co- 
ordinate transformation was done primarily so that the increasing width of the boundary layer in 
the physical dimension could be mapped into a constant width in the transformed normal co- 
ordinate (if stagnation conditions are used as reference this is between 5 and 7). However, because 
of the compressibility effect the transform also makes the gradients in the transformed system much 

Streamwise distance, m 

Figure 5. 3rd order implicit scheme with 3,4,5,6 and 7 point 4* formulae. The heat transfers (in J/m2) are plotted against 
streamwise distance 
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Streomwise distonce,m 

Figure 6. Comparison of Crank-Nicolson and 3rd order implicit schemes. The heat transfers (in J/m*) are plotted against 
streamwise distance 

Streomwise distonce, m 

Figure 7. Edge velocities in m/s for the test problem 
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Figure 8. Displacement and momentum thicknesses in metres 
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Figure 9. Skin friction in N/m2 
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0.001 0.002 0.003 
Y * m  

Figure 10. Stagnation point profile in the physical normal co-ordinate (m) 

Normal distance 

Figure 11. Stagnation point profile with the transformed normal co-ordinate 
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Table IV. Times in minutes and seconds to solve the above problem to the specified 
accuracy 

Implicit 3rd Implicit 3rd 
C-N without C-N with order without order with 

Jennings’ Jennings’ Jennings’ Jennings’ 
nd n, acceleration acceleration acceleration acceleration 

- 3 4 27:07 25:41 - 
6 4 15: 24 11:37 14:32 10:06 
6 5 18:04 15:20 15:29 8: 13 
6 6 18:34 13:03 16:55 7: 55 
6 7 17:37 16:05 16:50 8:25 

less severe than those in the physical one. Figure 10 shows a stagnation point profile in the physical 
co-ordinate system, whereas Figure 11 shows the profile in the transformed co-ordinate. 

Results showing the times taken to solve above problem using various methods are given in 
Table IV. nd is the number of points in the difference scheme (3-central difference, 6-skew 
scheme). nq is the number of points in the quadrature formula. All the above computations were 
performed on a VAX 11/780. 

11. CONCLUSIONS 

The most rapid way of solving these equations is to use the high order scheme in the normal co- 
ordinate direction with the 3rd order implicit scheme in the streamwise direction coupled with the 
acceleration method. There would not appear to be any reason to use a more than 5 point 
quadrature formula for calculating @*. Jennings’ acceleration (applied only in the streamwise 
direction) always allowed the flow to be calculated more rapidly. The reason why Jennings shows a 
much more marked improvement for the implicit scheme rather than Crank-Nicolson is that the 
implicit scheme is 3rd order and requires 5 checked normal sections to be calculated for a single 
step (see Figure 3), whereas the Crank-Nicolson scheme is 2nd order and requires 7 checked 
normal sections to be calculated. 

The methods all adaptively altered both their normal and streamwise step lengths to attempt to 
meet the relative error bound as closely as possible. This is essential if problems with very high 
gradients in their edge velocities are to be solved reasonably efficiently. 
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